English 4 IT. Praktyczny kurs angielskiego dla IT
Artykuł stanowi fragment książki pt. „English 4 IT. Praktyczny kurs języka angielskiego dla specjalistów IT i nie tylko” Beaty Błaszczyk (Helion 2016).
6.1. What is Business Intelligence?
Business Intelligence (BI) can be defined as a process of collecting business data and data analysis which goal is to provide proper information in order to boost business performance. It’s role is to help executives, business managers and other end-users make sound and informed business decisions as efficiently as possible.
BI encompasses a variety of tools, applications and methodologies which help organizations collect data from internal or external sources, prepare it for analysis, run queries against the data included in database and finally to create reports, interactive slice-and-dice pivot table analyses, dashboards and other data visualizations. Some benefits of using BI tools include:
- accelerated and improved decision-making process based on new and historical data gathered from the source systems;
- optimization of business processes and increased operational efficiency;
- possibility to spot new market trends, prepare forecasts and even conduct what-if analyses, without the need to guesstimate;
- identification of cross-selling and up-selling opportunities as a result of leveraging customer data.
6.2. BI system architecture
A BI system architecture includes the following components presented in figure 6.1 below.
Figure 6.1. Architecture of BI system. Source: Vatovec Krmac E., “Intelligent Value Chain Networks: Business Intelligence and Other ICT Tools and Technologies in Supply/Demand Chains”, Supply Chain Management — New Perspectives, edited by Sanda Renko, InTech, August 29, 2011.
The data sources layer provides data which comes from many different data storage systems. It includes data from relational databases, flat files, spreadsheets and other external sources. This data is therefore inconsistent, fragmented and not standardized.
Data integration layer involves ETL (Extraction, Transformation and Loading) processes which are responsible for data capture, data validation, data cleansing (or scrubbing), data transformation and loading into the data warehouse. In the first step data is extracted from their source to staging area. It is a temporary data store loaded with data from source systems. So, in this case, loading on-the-fly to destination database doesn’t take place. After loading the data to data warehouse, it can be removed from the staging area.
In the next step, data validation with the use of validation rules is required to confirm whether data extracted from the source systems has correct and expected values. Sometimes data profiling is carried out at this stage in order to collect statistics about data such as record counts or range of values as well as information about table structures (definitions about each field or column and their data types).
The cleansing process ensures that inconsistent and invalid data is cleaned before it is loaded to target database. In this process inconsistent or duplicate values are identified and violation of business rules is detected and corrected. As far as the transformation process is concerned, it involves for example changing data formats to prepare it for loading. In the last phase, cleansed and transformed data is loaded to target database.
The data warehouse and data marts are a part of data storage layer. A data warehouse is a subject-oriented, time-variant and non-volatile separate data store designed specifically for reporting and analytics, with data periodically refreshed. A data warehouse must also be carefully designed to meet performance requirements. It is often partially denormalized in order to optimize query and analytical performance. The term enterprise data warehouse means that it is a data store used by the entire company, not just by some departments.
A data mart is a subset of data warehouse. It is a data store created for specific group of users with comparable data needs. It is also created in companies to offload the query workload and often includes aggregated data, ready for quick reporting.
We mustn’t forget about the last layer, which is analysis and presentation layer. It uses the information stored in data storage layer. Data analysis components include software used to present information to business users, so that they are able to conduct analyses. These include the following analytical technologies:
- spreadsheets;
- online analytical processing (OLAP) and multidimensional online analytical processing (MOLAP) with multidimensional expressions (MDX) or data analysis expressions (DAX) applied;
- data mining and text mining tools;
- statistical analysis tools, etc.
Some of these tools enable the user to slice-and-dice data, perform roll-up, drill-down and drill-across activities or ad-hoc queries, as well as use analytical cubes.
Presentation layer is crucial for presenting information in visually appealing and eye-catching ways in order to help analysts and managers make informed decisions. BI presentation tools include:
- data visualization tools,
- dashboards and scorecards,
- executive reporting tools,
- self-service BI (SSBI),
- mobile BI tools,
- open source BI tools.
6.3. Star schema vs. snowflake schema
Database schemas are logical representations of database structure. A database schema is a collection of database objects, such as tables, views, indexes, synonyms. Two most commonly applied data warehouse schemas, which are data modelling techniques, are star schema and snowflake schema.
In a star schema, denormalized dimension tables are organized around a central fact table. This dimension table can also be a slowly changing dimension (SCD). The fact table is joined to them by foreign key references. Every dimension table includes a primary key on one or more columns and a set of attributes describing the dimension. Dimension tables should have relationships only with fact tables. The key columns in dimension and fact tables are filled with surrogate key values (also called meaningless key values) which are usually numbers with no meaning to business users. They are used to obtain never-changing key values which represent business objects or business events. If fact tables share the same dimension tables, these dimension tables are called conformed dimension tables.
The second type of database schema is snowflake schema which includes normalized dimension tables to avoid redundancies. Another difference between star and snowflake schema is that in the case of snowflake schema dimension tables have relationships with one another. It means that there are several dimension tables for each dimension as opposed to star schema. When querying the database, in the case of snowflake schema, there will be more joins than in star schema, and the computation of the result of the query will be more time-consuming for snowflake schema than in the case of a query run on star schema.
6.4. Gartner Magic Quadrant
Every year vendors of BI tools and analytics platforms are rated by Gartner Inc. upon two criteria — execution of stated vision and their performance on the market. Gartner Magic Quadrant serves as a first step to consider technology providers in terms of specific investment opportunity.
A Magic Quadrant presents a graphical competitive positioning of the following four types of technology providers:
- Leaders: These are the companies which execute well against their current vision and are expected to prosper continuously in the future.
- Visionaries: These are the companies which understand where the market is going or have a vision of their future change, but do not yet execute their vision well.
- Niche players: These are the players which focus successfully on a small segment and do not out-innovate or outperform other players on the market.
- Challengers:These are the companies which execute their vision well today and may dominate a large segment in the future, but they do not understand yet the market direction.
Figure 6.2. Magic Quadrant for Business Intelligence and Analytics Platforms for the year 2016
Sources: Parenteau J., Sallam R. L., Howson C., Tapadinhas J., Schlegel K., Oestreich T. W., Magic Quadrant for Business Intelligence and Analytics Platforms, 4 February 2016. Retrieved from http://www.gartner.com/doc/reprints?id=1-2XXET8P&ct=160204
6.5. Vocabulary
(to) accelerate — przyspieszać
ad-hoc query — zapytanie ad hoc
aggregated data — dane zagregowane
analysis and presentation layer — warstwa analizy i prezentacji
analytical cube — kostka analityczna
(to) boost business performance — pobudzać wzrost wyników działalności gospodarczej
business intelligence (BI) — analityka biznesowa/business intelligence
challenger — pretendent
cleansing process — proces oczyszczania
(to) collect data — gromadzić dane
computation — obliczenie
(to) conduct analysis — przeprowadzić analizę
conformed dimension table — współdzielona tabela wymiarów
cross-selling — sprzedaż krzyżowa
dashboard — kokpit menedżerski
data analysis expressions (DAX) — wyrażenia analizy danych
data capture — zbieranie danych
data cleansing — oczyszczanie danych
data format — format danych
data integration layer — warstwa integracji danych
data loading — ładowanie danych
data mart — składnica danych/tematyczna hurtownia danych
data mining — eksploracja danych
data profiling — profilowanie danych
data scrubbing — oczyszczanie danych
data sources layer — warstwa źródeł danych
data storage layer — warstwa przechowywania danych
data storage system — system przechowywania danych
data store — magazyn danych
data transformation — przekształcanie danych/transformacja danych
data type — typ danych
data validation — sprawdzanie poprawności danych
data visualization tool — narzędzie do wizualizacji danych
data visualization — wizualizacja danych
data warehouse — hurtownia danych
database schema — schemat bazy danych
(to) denormalize — dokonać denormalizacji
(to) detect — wykrywać
dimension table — tabela wymiarów
drill-across — drążenie w poprzek
drill-down — drążenie w głąb/drążenie w dół
duplicate value — duplikat wartości
(to) encompass — obejmować
end-user — użytkownik końcowy
(to) ensure — zapewniać
enterprise data warehouse — korporacyjna hurtownia danych
ETL process — proces ETL/proces ekstrakcji, transformacji i ładowania
executive reporting tool — narzędzie do raportowania dla kadry zarządzającej
executive — członek zarządu
expected value — wartość oczekiwana
eye-catching — przykuwający wzrok
fact table — tabela faktów
flat file — plik płaski
forecast — prognoza
foreign key reference — odwołanie do klucza obcego
fragmented — rozdrobniony/podzielony na części
(to) guesstimate — szacować „na oko”
inconsistent — niespójny
informed business decision — świadoma decyzja biznesowa
invalid data — nieprawidłowe dane
investment opportunity — możliwość inwestycyjna
join — złączenie
leader — lider
(to) leverage customer data — wykorzystać dane o klientach
loading on-the-fly — ładowanie w locie
meaningless key — klucz sztuczny
mobile BI tools — narzędzia do analizy business intelligence na urządzeniach mobilnych
multidimensional expression (MDX) — wyrażenie wielowymiarowe
multidimensional online analytical processing (MOLAP) — wielowymiarowe przetwarzanie analityczne online
niche player — gracz niszowy
non-volatile — nieulotny
(to) offload — odciążać
online analytical processing (OLAP) — przetwarzanie analityczne online
open source BI — narzędzia typu open source do analiz business intelligence
operational efficiency — efektywność operacyjna
(to) out-innovate — wykraczać poza ramy w zakresie wprowadzania innowacji
(to) out-perform — wykraczać poza ramy w zakresie wyników działalności gospodarczej
periodical — okresowy
positioning — pozycjonowanie
primary key — klucz główny
query workload — obciążenie wskutek wykonywania zapytania
record count — liczba rekordów
redundancy — redundancja/nadmiarowość
(to) refresh — odświeżać
relational database — relacyjna baza danych
relationship — związek/relacja
roll-up — konsolidowanie/zwijanie
(to) run a query — uruchomić zapytanie
scorecard — karta wyników
self-service BI (SSBI) — samodzielnie przeprowadzana analiza business intelligence
(to) slice-and-dice data — analizować dane w dowolnych przekrojach i rzutach
slice-and-dice pivot table analysis — analiza danych w dowolnych przekrojach i rzutach za pomocą tabeli przestawnej
slowly changing dimension (SCD) — wymiar wolnozmienny
snowflake schema — schemat płatka śniegu
sound business decision — rozsądna/trafna decyzja biznesowa
(to) spot — zauważać/dostrzegać
spreadsheet — arkusz kalkulacyjny
staging area — obszar tymczasowy
star schema — schemat gwiazdy
(to) state — określać/ogłaszać
statistical analysis — analiza statystyczna
subject-oriented — tematyczny
surrogate key — klucz sztuczny
target database — docelowa baza danych
temporary data store — tymczasowe miejsce przechowywania danych
text mining — eksploracja tekstu/danych tekstowychtime-consuming — czasochłonny
time-variant — zmienny w czasie
(to) transform — przekształcać
up-selling — sprzedaż produktów droższych
validation rule — reguła poprawności
violation of business rules — naruszenie reguł biznesowych
visionary — wizjoner
visually appealing — atrakcyjny wizualnie
what-if analysis — analiza typu „co-jeśli?”
„English 4 IT. Praktyczny kurs języka angielskiego dla specjalistów IT i nie tylko” Beaty Błaszczyk można kupić w księgarni Helion.pl.